Go back
Finishing the algorithm.
Subscribe to Tech with Tim
YouTube
In part 2 of this tutorial we will finish the algorithm and continue to understand how it works by running through our code step by step. We will use a recursive function to implement the algorithm explained in part 1.
Part 2 Code
board = [ [7,8,0,4,0,0,1,2,0], [6,0,0,0,7,5,0,0,9], [0,0,0,6,0,1,0,7,8], [0,0,7,0,4,0,2,6,0], [0,0,1,0,5,0,9,3,0], [9,0,4,0,6,0,0,0,5], [0,7,0,3,0,0,0,1,2], [1,2,0,0,0,7,4,0,0], [0,4,9,2,0,6,0,0,7] ] def solve(bo): find = find_empty(bo) if not find: return True else: row, col = find for i in range(1,10): if valid(bo, i, (row, col)): bo[row][col] = i if solve(bo): return True bo[row][col] = 0 return False def valid(bo, num, pos): # Check row for i in range(len(bo[0])): if bo[pos[0]][i] == num and pos[1] != i: return False # Check column for i in range(len(bo)): if bo[i][pos[1]] == num and pos[0] != i: return False # Check box box_x = pos[1] // 3 box_y = pos[0] // 3 for i in range(box_y*3, box_y*3 + 3): for j in range(box_x * 3, box_x*3 + 3): if bo[i][j] == num and (i,j) != pos: return False return True def print_board(bo): for i in range(len(bo)): if i % 3 == 0 and i != 0: print("- - - - - - - - - - - - - ") for j in range(len(bo[0])): if j % 3 == 0 and j != 0: print(" | ", end="") if j == 8: print(bo[i][j]) else: print(str(bo[i][j]) + " ", end="") def find_empty(bo): for i in range(len(bo)): for j in range(len(bo[0])): if bo[i][j] == 0: return (i, j) # row, col return None print_board(board) solve(board) print("___________________") print_board(board)